Time-dependent wavepacket investigation of state-to-state reactive scattering of Cl with para-H(2) including the open-shell character of the Cl atom.
نویسندگان
چکیده
We describe a time-dependent wavepacket based method for the calculation of the state-to-state cross sections for the Cl+H(2) reaction including all couplings arising from the nonzero spin and electronic orbital angular momenta of the Cl atom. Reactant-product decoupling allows us to use a physically correct basis in both the reactant and the product arrangements. Our calculated results agree well with the experimental results of Yang and co-workers. We also describe a model with two coupled potential energy surfaces, which includes the spin-orbit coupling, which is responsible for the largest non-Born-Oppenheimer effects in the Cl+H(2) reaction but neglects the off-diagonal electronically diabatic coupling and all Coriolis couplings due to the electronic spin and orbital angular momenta. The comparison of the results of the full six-state and two-state models with an electronically adiabatic (one-state) description reveals that the latter describes well the reaction out of the ground spin-orbit state, while the two-state model, which is computationally much faster than the full six-state model, describes well the reaction from both the ground and excited spin-orbit states.
منابع مشابه
محاسبه سطح مقطع جزیی انتقال حالت به حالت بار به روش فادیف
A second-order approximation to the Faddeev-Watson-Lovelace treatment of the rearrangement channel is used in a three-body scattering cross sections. In this formalism, the Three-body wave function is expressed by three coupled integral equations, the Faddeev equations, which contian the two-body (off-shell) transition amplitudes, and proved the uniqueness of their solutions. This amplitude c...
متن کاملEnergetical and structural investigation for equatorial/axial conversion of different substituents on piperidine and phosphorinane: A theoretical study
Equatorial/axial conversion in piperidine and phosphorinane with different substituents wereinvestigated with great details. Three possible routes, i.e. heteroatom inversion and two ring inversiontype were considered. Ring conversion can occur via two pathways one starts with ring flatteningfrom the heteroatom site (nitrogen in piperidine and phosphorous in phosphorinane) and the otherinitiates...
متن کاملSynthesis, Spectroscopy and Magnetic Characterization of Five Dinuclear Copper(II) Complexes with 2, 3 or 4-Pyridinemethanol as the Ligand
The synthesis, spectroscopy and magnetic characterization of five new dinuclear copper(II) complexes are described. All five compounds have the general formula [Cu2(L)4(O-R)2](Cl)2 or [Cu2(L)2(Cl)2](Cl)2, in which R = CH3 or H, L=2, 3 or 4-pyridinemethanol as L2, L3 or L4, respectively. The title compounds consist of dinuclear units with bridging methoxo groups in [Cu2(L4)4(O-CH3)2](Cl)2, hydro...
متن کاملA Density Functional Approach toward Structural Features and Properties of C20 and its Complexes with C2X4, C2X2 (X = H, F, Cl, Br) for Synthesis Application
The complexes between C20 and C2 X4 , C2 X2 (X = H, F, Cl, Br) have been studied theoretically at the B3LYP/6-311G (d,p) level. The calculations include the optimized geometries, the interaction energies, aromaticity and thermodynamic. The interaction energies ranging from -60 to -101 kcal/mol and being ordered as: X = F> Cl > Br. Natural bond orbital (NBO) analysis has been performed on all ge...
متن کاملReaction of Cl with vibrationally excited CH4 and CHD3: State-to-state differential cross sections and steric effects for the HCl product
The mechanism for the reaction of atomic chlorine with vibrationally excited methane is investigated by measurement of correlated state and scattering distributions using the method of core extraction see preceding paper . Laser photolysis of molecular chlorine creates monoenergetic chlorine atoms 98% Cl P3/2 that react with vibrationally excited methane molecules prepared by linearly polarized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 132 3 شماره
صفحات -
تاریخ انتشار 2010